Дроби древнего мира

Аликвотные дроби

Древний Египет


Египетские дроби были изобретены и впервые использованы в древнем Египте. Одним из первых известных упоминаний о египетских дробях является Математический папирус Ринда. Три более древних текста, в которых упоминаются египетские дроби — это Египетский математический кожаный свиток, Московский математический папирус и Деревянная табличка Ахмима.
С древних времён людям приходилось не только считать предметы, для чего требовались натуральные числа, но и измерять длину, время, площадь. Не всегда результат измерения выражался натуральным числом, приходилось учитывать части и доли. Потребность в нахождении долей единицы появилась у наших предков при дележе добычи после охоты. Древние египтяне особое пристрастие питали к дробям, в числителе которых стоит единица. В современной математике они именуются аликвотными (от латинского aliguot- " несколько'').
Аликвотная дробь-это дробь вида 1/n, где n-натуральное число. Единственной дробью в обиходе египетских писцов, у которой в числителе не стояла 1, была дробь 2/3. Египтяне уже знали, как два предмета разделить на троих. Первой дробью, с которой познакомились египтяне, была половина.
В русских рукописных арифметиках XVII века дроби называли долями, позднее «ломаными числами».
Египетские дроби продолжали использоваться в древней Греции и впоследствии математиками всего мира до средних веков, несмотря на имеющиеся к ним замечания древних математиков (к примеру, Клавдий Птолемей говорил о неудобстве использования египетских дробей по сравнению с Вавилонской системой). Важную работу по исследованию египетских дробей провёл математик XIII века Фибоначчи в своём труде «Liber Abaci».
Основная тема «Liber Abaci» — вычисления, использующие десятичные и обычные дроби, вытеснившие со временем египетские дроби. Фибоначчи использовал сложную запись дробей, включавшую запись чисел со смешанным основанием и запись в виде сумм дробей, часто использовались и египетские дроби. Также в книге были приведены алгоритмы перевода из обычных дробей в египетские.

Представление дробей в виде аликвотных

Шестидесятиричная система счисления

Древний Вавилон


Загадка возникновения шестидесятиричной системы счисления неоднократно привлекала умы математиков в течение последних двух тысяч лет. Создано несколько гипотез, каждая из которых освещала одну из сторон проблемы. Поэтому каждая из этих гипотез получила свою порцию критики, но это не значит, что они были неверными и не имели жемчужного зерна.
Наибольшего внимания, по мнению М.Я. Выгодского, заслуживают гипотезы Тюро-Данжена, Нейгебауера и Веселовского. Они рассмотрены в книге Выготского М.Я “Арифметика и алгебра в древнем мире” (1941, глава 2, параграф 5, стр. 99-104). Кратко об этих гипотезах:
Гипотеза 1. Теон Александрийский (конец 4 и начало 5 века н.э.)
Теон полагает, что число 60 было выбрано вавилонянами за основание системы счисления в силу своих арифметических свойств: оно имеет наибольшее число различных делителей среди сравнительно небольших чисел.

Гипотеза 2. Тюро-Данжена (1932)
Тюро-Данжен предположил, что в древнейшее время вавилонская нумерация имела смешанный десятично-шестеричный характер; единицей второго разряда служила десятка; единица же третьего разряда образовалась из шести единиц второго разряда, так что роль нашей "сотни" играло число 60. Тюро-Данжен считает, что причина этого в том, что число 6, делящееся на 2 и 3, оказалось более удобным по своей арифметической структуре.

Гипотеза 3 О. Нейгебауэра заключается в том, что после аккадского завоевания шумерского государства там долгое время одновременно существовали две денежно-весовые единицы: шекель (сикль) и мина, причём было установлено их соотношение 1 мина = 60 шекелей. Позднее это деление стало привычным и породило соответствующую систему записи любых чисел.

Гипотеза 4 Веселовского И.Н. (1959)
Гипотеза Веселовского связана с применением двенадцатеричной системы счисления и счёта на пальцах (60 = 5×12, где 5 — число пальцев на руке)

Гипотеза 5 Кевич предпологает, что шестидесятеричная система возникла из смешения двух систем, существовавших прежде независимо: десятеричной и шестеричной. Одна из них, по мнению Кевича, должна быть система исчисления шумеров, другая - аккадян. Гипотеза мало обоснована фактами, оставляла открытым вопрос, какой из двух народов, шумерский или аккадский, имел первоначально шестиричную систему.
Из гипотез математиков становится ясно, что 60-теричная система возникла на основе ранее существовавшей другой системы счисления. Приведённые выше гипотезы не объясняют, откуда возник позиционный принцип вавилонской нумерации.



Наше мнение
Нам кажется, что гипотеза И. Н. Веселевского более вероятной, так как в те времена самым простым способом было считать на пальцах, а руки всегда были с собой и потому, что до н.э не то, что считать даже писать не умели, а считать на руках не так уж и сложно, так, что данная гипотеза более вероятна

Клинописные таблички в Вавилоне

Прибегать к вычислениям, жизнь заставляла вавилонян на каждом шагу. Арифметика и нехитрая алгебра нужны были в ведении хозяйства, при обмене денег и расчётах за товары, вычислении простых и сложных процентов, налогов и доли урожая, сдаваемой в пользу государства, храма или землевладельца. Математических расчётов, причём довольно сложных, требовали масштабные архитектурные проекты, инженерные работы при строительстве ирригационной системы, баллистика, астрономия, астрология.

В Месопотамии археологи уже нашли и продолжают находить клинописные таблички с записями математического характера частью на аккадском, частью на шумерском языках, а также справочные математические таблицы. Последние сильно облегчали вычисления, которые приходилось производить повседневно, поэтому в ряде расшифрованных текстов довольно часто содержится исчисление процентов. Сохранились названия арифметических действий более раннего, шумерского периода месопотамской истории. Так, операция сложения называлась «накопление» или «прибавление», при вычитании употреблялся глагол «вырывать», а термин для умножения означал «скушать».

Древней Месопотамии были созданы единообразные правила арифметических действий не только с целыми числами, но и с дробями, в искусстве оперирования которыми вавилоняне значительно превосходили египтян. В Египте, например, операции с дробями долгое время продолжали оставаться на примитивном уровне, так как они знали лишь аликвотные дроби. На основе шестидесятиричной системе счисления были составлены различные вычислительные таблицы. Кроме таблиц умножения и таблиц обратных величин, с помощью которых производилось деление, существовали таблицы квадратных корней и кубических чисел.

Многие сохранившиеся клинописные материалы представляли собой учебные пособия для вавилонских школьников, в которых приводились решения различных несложных задач, часто встречавшихся в практической жизни. Неясно, правда, решал ли ученик их в уме или делал предварительные вычисления прутиком на земле – на табличках записаны только условия математических задач и их решение.

Основную часть курса математики в школе занимало решение арифметических, алгебраических и геометрических задач, при формулировке которых было принято оперировать конкретными предметами, площадями и объёмами.

Римская система дробей


Интересная система дробей была в Древнем Риме. Римляне пользовались, в основном, только конкретными дробями, которые заменяли абстрактные части подразделами используемых мер. Эта система дробей основывалась на делении на 12 долей единицы веса, которая называлась асс. Так возникли римские двенадцатеричные дроби, т.е. дроби у которых знаменатель всегда был двенадцать. Двенадцатую долю асса называли унцией. А путь, время и другие величины сравнивали с наглядной вещью- весом. Например, римлянин мог сказать, что он прошел семь унций пути или прочел пять унций книги. При этом, конечно, речь шла не о взвешивании пути или книги. Имелось в виду, что пройдено 7/12 пути или прочтено 5/12 книги. А для дробей, получающихся сокращением дробей со знаменателем 12 или раздроблением двенадцатых долей на более мелкие, были особые названия.

Даже сейчас иногда говорят: ”Он скрупулёзно изучил этот вопрос.” Это значит, что вопрос изучен до конца, что не одной самой малой неясности не осталось. А происходит странное слово “скрупулёзно” от римского названия 1/288 асса - “скрупулус”. В ходу были и такие названия: ”семис”- половина асса, “секстанс”- шестая его доля, “семиунция”- половина унции, т.е. 1/24 асса и т.д. Всего применялось 18 различных названий дробей. Чтобы работать с дробями, надо было помнить для этих дробей таблицу сложения и таблицу умножения. Поэтому римские купцы твёрдо знали, что при сложении триенса (1/3 асса) и секстанса получается семис, а при умножении беса (2/3 асса) на сескунцию ( 2/3 унции, т.е.1/8 асса) получается унция. Для облегчения работы составлялись специальные таблицы, некоторые из которых дошли до нас.

Из-за того что в двенадцатеричной системе нет дробей со знаменателями 10 или 100, римляне затруднялись делить на 10, 100 и т. д. При делении 1001 асса на 100 один римский математик сначала получил 10 ассов, потом раздробил асе на унции и т. д. Но от остатка он не избавился. Чтобы не иметь дела с такими вычислениями, римляне стали использовать проценты. Они брали с должника лихву (то есть деньги сверх того, что было дано в долг). При этом говорили: не "лихва составит 16 сотых суммы долга", а "на каждые 100 сестерциев долга заплатишь 16 сестерциев лихвы". И сказано то же самое, и дробей использовать не пришлось! Так как слова "на сто" звучали по-латыни "про центум", то сотую часть и стали называть процентом. И хотя теперь дроби, а особенно десятичные дроби, известны всем, проценты все-таки применяются и в финансовых расчетах, и в планировании, то есть в различных областях человеческой деятельности. А раньше применяли еще и промилли - так называли тысячные доли (по-латыни "про милле" - на тысячу). В отличие от процентов, которые обозначают знаком %, промилли обозначают %о


Унцию у римлян переняла Европа, а потом и весь мир. Эта мера была популярна до введения метрической системы. В Германии, Испании, Португалии -1 унция равнялась 1/16 большого торгового фунта, в Италии — 1/12 фунта. (1 фунт = 0,45359237 кг или 453,59237 граммов)
На Сицилии существовала монета «унция». В Латинской Америке так называли дублон. А в Китае – таэль, денежную единицу из чистого серебра. Её вес – 37,3 грамма.
Тройская унция (t oz или ozt) = 31,1034768 грамма. Применяют ее в банковском и ювелирном деле для измерения веса драгоценных металлов.
Многие мировые банки (Канада, Австрия, Австралия, ЮАР, США, Китай) выпускают золотые монеты весом в одну тройскую унцию.
В России использовали 1 аптекарский фунт = 358,323 граммам, 1 унция — 29,86 грамма.
Эту меру отменили в СССР в 1927 году.

Наше мнение:
Мы считаем, что Вавилонская система счисления была более развита. В то время вавилонянам приходилось решать огромное количество задач. Шестидесятиричную систему счисления мы используем до сих пор для измерения времени.
This site was made on Tilda — a website builder that helps to create a website without any code
Create a website